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This paper considers the numerical solution of elliptic differential equations on the unit 
disk. Using polar coordinates, the disk is mapped onto a rectangle. The resulting transformed 
problem is solved by a method related to collocation. Since the origin is a coordinate 
singularity, some natural trial functions are singular there and a special technique is applied 
to use zero as a collocation point. For Poisson and Helmholtz equations, a fast algorithm 
with an operation count of B(N210gN) is presented. Numerical results show the different 
stability and convergence properties of the algorithms. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

Consider an elliptic differential operator A of second order defined on the unit 
disk 

,B := ((x, y)~ R* :x2+yZ<l}. (1) 

B is the image of the set 

B” := [0, l] x R2, (2) 

under the polar coordinate mapping 

P:lFqxR2,+R2 (3) 

(r, cp) H (r cos cp, r sin rp). (4) 

Here R2, denotes the set of equivalence classes of real numbers where two real 
numbers 4 and $ are equivalent if there exists an integer k such that 4 - $ = 2nk. 
Thus, each function defined on R,, is equivalent to a 2a-periodic function defined 
on R. W,+ denotes the set of non-negative real numbers. 

*Work based on [3]. 
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For an arbitrary function f" on B” we define the corresponding function f on B 
by 

fk .Y):=f"~w& Y) if (x,y)#O (5) 

f(O,O):=~~~~~f'(O,~)d~ if (x, y) = 0. (6) 

Thus, f is continuous if lim,,,, f exists on B\(O). 
Let U be the interior of B and S its boundary. The natural way of applying 

spectral methods to the problem 

Au=f on U (7) 

u=g on S (8) 

is to compute the transformed differential operator A” and to solve the transformed 
differential equation 

A”u”=f” on U” (9) 

MO = g” on S”, (10) 

where U” := [0, 1)x R,, and S” := (1) x RZ,. Its numerical solution uR is 
expanded using trial functions 

Yik(r, cp) := rneikq, (11) 

as 

For the case of collocation, we choose N+ 1 points rm E [0, l] (where r. = 1 and 
ri < rj for i> j> 0 is assumed) and 2N points qje R,,. We then determine the 
coefficients a,& from the system of equations 

A"~~(rm~ Vj)=f"(rm, Vj), m = 1, . ..) N; j = 0, . . . . 2N - 1 (13) 

48r0, cpi) = g”(ro, cpi), j= 0, . . . . 2N- 1. (14) 

This is straightforward if all r,,, are different from zero. But a special problem arises 
in the case of rN = 0. Since the polar coordinate mapping is not invertible at r = 0, 
it is not possible to evaluate A”ui(O, cpi) for arbitrary ui. 

In order to obtain optimal convergence, the rm are normally chosen as Gauss- 
Legendre or Gauss-Lobatto points. In particular, the Chebychev extremals are 
preferred since they allow the application of FFT. Unfortunately, r = 0 occurs as a 
collocation point just when FFT is most efficiently applicable (N a power of 2). 
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2. REGULARITY OF TRIAL FUNCTIONS 

We consider trial functions of type (11). To obtain well-conditioned matrices, it 
is more convenient to use orthogonal polynomials than monomials with respect to 
the radial coordinate. But monomials allow a simpler investigation of regularity. 
The following results can be applied to orthogonal polynomials by expanding them 
in monomials. 

Due to the coordinate singularity, the functions lYnk are not necessarily as regular 
on B as the functions !Pzk are on B”. For instance, !P10 is the euclidian norm which 
is not differentiable at 0 while !Pok is discontinuous there for every k #O. Similar 
problems arise in all singular coordinate systems. We refer to Orszag [ll], Boyd 
[l], and Canuto, Hussaini, Quarteroni, and Zang [2]. To classify the regular and 
irregular functions Yn,, there are a few important theorems. Although not very 
complicated, we do not know any reference where a clear mathematical formulation 
and proofs of them are published. So we will do this here. 

THEOREM 1. Y,,, is n-times continuously differentiable if and only if it is a 
polynomial. 

Proof: The functions Yn, are homogeneous of degree n, i.e., Y,Jtz) = t”Y,+(z) 
for all z = (x, y) E R2 and all t > 0. Derivatives of functions which are homogeneous 
of degree j are homogeneous of degree j- 1. Thus, the nth derivative of Y,,, is 
homogeneous of degree 0; i.e., 

YZ)(tz) = Y$)(z) for all z # 0, t > 0. (15) 

Since Y $I is continuous, it follows lim, _ ,, Y rkJ( tz) = Y;,)(O) and 

Yz)(z) = Yz)(O) = const (16) 

for all z E B. Since a derivative of Y,,, is constant Y,,, is a polynomial. 1 

To investigate whether Y,,, is n-times continuously differentiable, there is 

THEOREM 2. YH, is a polynomial if and only if 

n-kE22 

(parity condition) and 
n > Ikl. 

(17) 

(18) 

Proof: On B\(O) there is an explicit formula for the Y,,, = Yiko P-l. We 
use the equalities x = r cos cp, y = r sin cp, r = ,/‘m, and eiV = cos cp + i sin cp. 
Therefore, 

eikrp = teiv)k rg” ( J~~~y2)k~ (19) 
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(20) 

= (x2 + y*)(“+ k)‘2 (x + iy)” = Ynk(x, y). (21) 

If (n-k) is odd, Y,,, is never a polynomial because 

j$ )=. (Jm)“-k (x+iyY= -zi 
i . 

for x>O 
for x<O. (22) 

Thus, !Pnk has a partial derivative which cannot be continuously extended to B and 
is therefore not a polynomial on B. 

To complete the proof, we have to consider only the case where n -k is even. 
Factorizing 

(x2 + y2) = (x + iy)(x - iy), (23) 

we obtain 

YJx, y) = (x + iy)(n+k)/2 (x- iy)(n-k)/2. (24) 

If Ikl > n, either the exponent of (x + iy) or of (x - z’y) is negative in (24). Since the 
factors (x + iy) and (x - iy) are relatively prime, ul,, cannot be a polynomial in this 
case. 

If Jkl < n, both exponents in (24) are non-negative. Thus, Y,,, is a polynomial on 
B\(O) which can be extended continuously to B (as done in (6)). m 

Although not every function Y,,, is n-times differentiable, there is 

THEOREM 3. Zf n 2 2 then Y,,k is at least (n - 1 )-times differentiable. 

Proof. Since Y,,, is homogeneous of degree n it follows that 

(25) 

as z -+ 0. Thus the (n - 1)th derivative of Y”, exists at z = 0 and is zero. 1 

3. COLLOCATION EQUATIONS AT THE ORIGIN 

If r =0 is a collocation point, we have to replace the 2N formal collocation 
equations 

A “Gv(0, cp,) = f”(O, cpi), j = 0, . ..) 2N - 1 (26) 
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which are contained in (13) by 2N well-defined equations. The problem is that uN 
could consist of trial functions which are not twice differentiable. Thus, it is not 
possible to evaluate the differential operator in (26). On the other hand, we know 
that the solution u of Au = f is at least twice Holder-continuously differentiable if 
f is Holder-continuous (see, for example, Gilbarg and Trudinger [4]). In version 1 
of our method, we obtain the first equation by the modified collocation condition 

A c ank ul,k(o, 0) = f(o, 0). (27) 
(n,k)eP 

Here P denotes the set of index pairs belonging to twice differentiable trial 
functions, i.e. (by Theorems 2 and 3), 

P:={(n,k)EZ:( n>,Ikl andn-kE2Z)orn>2}. (28) 

Equation (27) implies that the twice differentiable part of u,,, satisfies the collocation 
condition at the origin. 

All partial derivatives up to order 2 of Ynk are zero at the origin if n > 2. Thus, 
the set P in (27) may be restricted to the set 

P’ := {(O,O), (0, f2), (1, kl), (2, Oh (2, +a). (29) 

We still need 2N- 1 further equations. The trial functions YO, are discontinuous 
if k # 0. In order to obtain a continuous numerical solution uN we require the 
2N - 1 conditions 

aOk - -0 for k= -N+ 1, . . . . N; k#O. (30) 

Thus, with (27) and (30) we have obtained 2N linearly independent equations to 
replace (26). 

Instead of (27), it is also possible to require that the derivative of the zeroth 
Fourier mode vanishes at the origin (version 2). This more familiar condition is 
motivated by the continuity of U’ and equivalent to 

a - 0. 10 - (31) 

4. NUMERICAL RESULTS FOR POISSON'S PROBLEM 

In this section we give a few numerical results where the ideas presented above 
have been applied to Poisson’s problem 

-Au=f on U, u=g on S (32) 

with the exact solution U(X, y) = e;+!, The transformed differential operator of A is 

A&“,“+“72 
r ar ar r2 ad' (33) 
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We compose uN using only real-valued trial functions 

N 
ank COS kq + 1 b,,k Sin kq . 

> k=l 
(34) 

The collocation points used are 

{(rm, cpi): r,=cosmn/(2N), cpi=(j+ l/2) x/N, m=O, . . . . N, j=O, . . . . 2N- 1). (35) 

Tables I and II contain the discrete error 

where 
A4 := { (rm, cpj): r,,, = cos(mn/(2N)), ‘pi = j7c/(2N), 

m E { 0, . . . . N), je (0, . . . . 4N- l}}. (37) 

The numerical solution contains trial functions that are not infinitely differentiable 
because their indices violate (17) or (18). This part of uN is measured by the 
quantities 

2 k>n := c (lanki + lbnkl) 

‘z k+nmodZ := 1 (lank1 + lb&) (39) 
k+nc2Z+l 

c := c (lank1 + lbnkl)~ 
Ikl >n or k+neZL+ 1 

TABLE I 

Collocation for Poisson’s Problem on the Unit Disk (Version 1) 

2 2.949 x 10-l 
3 9.935 x 1om2 
4 2.198 x 10m2 
5 2.380 x 10-j 
6 7.623 x 1O-5 
7 2.771 x lo-’ 
8 3.273 x 1O-6 
9 1.900 x 10-7 

10 2.231 x 10m9 
11 8.548 x 10-l’ 
12 6.816 x lo-“ 
13 2.728 x 10-l’ 
14 3.306 x 10-” 
15 9.555 x 10 I2 
16 8.612 x 10-” 

1.620 x 10’ 
8.675 x 10-l 
4.751 x 10-l 
1.783 x 10-l 
7.132x 1O-2 
1.883 x 10m2 
5.458 x 1O-3 
1.164 x lo-’ 
2.697 x 10 m4 
4.765 x 1O-5 
9.185 x 10m6 
5.481 x 10m6 
5.589 x lo-’ 
4.056 x 10m4 
2.733 x lo-’ 

1.280 x 10-l 
1.249 x 10-l 
6.029 x 10m2 
3.130x 1o-2 
1.194 x 1o-2 
2.595 x 10 -’ 
5.795 x 1om4 
1.141 x 1o-4 
2.184 x IO-’ 
3.191 x 1o-6 
4.639 x 10 -’ 
3.048 x 10m6 
3.435 x 1om5 
1.848 x lo-“ 
1.111 x lo-) 

1.620 x 10’ 
8.819 x 10-l 
4.834 x 10-l 
1.859 x 10-l 
7.476 x 10m2 
1.960 x lo-* 
5.632 x lo-’ 
1.200 x lo-’ 
2.769 x 1O-4 
4.870 x 10 -5 
9.337 x 10m6 
6.815 x 10m6 
7.113 x 10-S 
4.843 x 1O-4 
3.213 x IO-’ 

(40) 
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TABLE II 

Collocation for Poisson’s Problem on the Unit Disk (Version 2) 

N E, .r n+kmod2 z k>n .?I 

2 9.589 x 10m2 
3 9.310 x 10-l 
4 2.185 x lo-’ 
5 2.365 x lo-’ 
6 6.037 x 10 -’ 
7 2.777 x 10m5 
8 3.272 x 10m6 
9 1.902 x lo-’ 

10 2.040 x 10 -9 
11 8.545 x 10-l’ 
12 6.817 x 10-l’ 
13 2.747 x lo- I2 
14 7.810 x lo-l3 
15 3.073 x 10 I2 
16 4.767 x lo-l2 

1.236 x 10’ 
7.463 x 10-l 
4.737 x 10-l 
1.823 x 10-l 
7.223 x 10m2 
1.920 x lo-’ 
5.508 x lo-’ 
1.178 x 10m3 
2.713 x 10m4 
4.802 x 1O-5 
9.303 x 1om6 
4.335 x 1o-6 
2.486 x 1O-5 
2.687 x 1O-4 
2.358 x 1O-3 

1.280 x 10-l 
1.250 x 10-l 
6.030 x 1O-2 
3.131 x 1om2 
1.194 x 10-Z 
2.596 x lo-’ 
5.796 x 10m4 
1.141 x 1om4 
2.184 x 1O-5 
3.225 x 10m6 
4.835 x lo-’ 
1.952 x lO-6 
5.691 x 1O-6 
1.268 x 1O-4 
8.626 x 10 -4 

1.236 x 10’ 
7.607 x 10-l 
4.820 x 10-l 
1.900 x 10-l 
7.567 x 1O-2 
1.997 x 1o-2 
5.681 x 10m3 
1.215 x 10~’ 
2.785 x 1O-4 
4.909 x 1om5 
9.463 x 10 -6 
5.169 x 1O-6 
2.711 x 10m5 
3.232 x 10m4 
2.736 x 10m3 

For small N, we observe the well-known exponential convergence. For larger N, 
this is disturbed by rounding errors because the monomials in the radial part of the 
trial functions lead to rather ill-conditioned matrices. A somewhat surprising feature 
is that the C’s are relatively large compared to the numerical error E,. 

5. SMOOTH LEAST SQUARES SOLUTIONS 

Since the non-smooth trial functions are well-known, by Theorems 1 and 2, we 
might expand uN using only smooth trial functions. This would require fewer 
collocation points. The problem is how to choose them, because there is no longer 
a natural distribution such as the Cartesian product of one-dimensional distribu- 
tions. 

Another way is to use only smooth trial functions but the same collocation points 
as in (35). This results in an overdetermined system of equations Mx = b whose 
least squares solution can be computed. 

We have applied this to the problem of the previous section. Tables III and IV 
contain the numerical results. The columns marked by “Z = 0” contain the errors 
of the numerical solution which consists only of totally smooth trial functions. In 
addition, we have computed a solution which only satisfies either the smoothness 
condition (18) (the corresponding columns are marked by “Ck,,, = 0”) or the 
condition (17) (“CnfkmOd2=O”). 

The linear least squares problems have been solved by the QR-algorithm. This 
can also be done by solving the normal equations MMTx = MTb by the Cholesky 
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TABLE 111 

Linear Least Squares Solutions of Overdetermined Collocation (Version I ) 

LT -0 k>n- z‘,, / i mod 2 = 0 z = 0 

N E, z‘ ET /T E, 

2 2.949 x 10 - ’ 
3 9.936x 1O-2 
4 2.201 x lo-? 
5 2.380 x tom3 
6 7.624 x 10m5 
7 2.771 x 10m5 
8 3.276 x 10m6 
9 1.900 x 1o-7 

10 2.232 x 10 -9 
11 8.549 x 10 - ” 
12 6.814 x 10-l’ 
13 2.730 x 10 I2 
14 4.317 x lo-l2 
15 9.010 x lo-l2 
16 2.001 x lo-” 

1.492 x 10” 
6.846 x 10 ’ 
3.599 x 10-l 
1.109 x 10-l 
4.437 x lo-* 
1.053 x 10m2 
3.121 x 10-j 
6.044x 1O-4 
1.423 x 1O-4 
2.322 x 10m5 
4.464 x iO-6 
8.933 x lo-’ 
7.455 x 10-e 
4.702 x 1O-5 
3.475 x 1om4 

2.242 x 10-l 
8.968 x lo-’ 
2.138 x lo-’ 
2.331 x 10m2 
1.377 x 10m4 
2.756 x 10m5 
3.322 x tom6 
1.900 x lo-’ 
5.133 x lo-’ 
8.547 x 10 ” 
6.834x lo-” 
2.723 x lo-l2 
5.373 x 10-14 
3.619 x 10-l“ 
3.619 x 10mL4 

6.762 x 10m2 
3.537 x 10 mz 
7.452 x 10m3 
3.183x 10-j 
6.330 x 10m4 
1.147x tom4 
1.760x 10m5 

2.405 x 10m6 
3.266 x lo-’ 
3.371 x lo-” 
3.947 x 1omy 
3.418 x lO-‘O 
3.597 x 10-I’ 
2.932 x 10 - I2 
1.259 x lo-‘* 

2.293 x IO ’ 
8.984 x 10 ’ 
2.076x IO-’ 
2.378 x IO-’ 
1.149 x 1om4 
2.752x IO-’ 
3.269 x tom6 
1.887x lo-’ 
3.863 x lo-~’ 
8.484 x 10 lo 
6.809 x lo-” 
2.712 x lo-l2 
4.152x IO-l4 
2.309 x 10-l“ 
2.598 x 10mL4 

TABLE IV 

Linear Least Squares Solutions of Overdetermined Collocation (Version 2) 

c -0 !i>n- /r -0 "+klllOd2- z=o 

N EX c E, z E, 

2 9.589 x 10m2 1.108 x 10’ 2.106 x 10-l 6.762 x 1O-2 2.158 x 10-l 
3 9.311 x 10-2 5.634 x 10 ml 9.582 x lo-* 3.537 x 1om2 8.951 x 1O-2 
4 2.193 x 1O-2 3.585 x 10-l 2.134 x lo-’ 7.452 x 10 3 2.072 x lo-* 
5 2.365 x 1O-3 1.149x 10-l 2.318 x lo-’ 3.183 x lo-’ 2.365 x lo-’ 
6 6.001 x 10m5 4.527 x 10m2 1.372 x 1O-4 6.330 x 1O-4 1.154 x 1o-4 
7 2.776 x 1O-5 1.090 x 10-Z 2.758 x 10m5 1.147x 1om4 2.750 x tom5 
8 3.274 x 1O-6 3.170x 10-3 3.322 x 1O-6 1.760 x lo-’ 3.269 x 10m6 
9 1.902 x lo-’ 6.184 x 1O-4 1.899 x lo-’ 2.405 x 10 m6 1.888 x lo-’ 

10 2.035 x 1O-9 1.438 x 1O-4 5.142 x 1O-9 3.266 x 10 -’ 3.873 x 10 -9 
11 8.545 x 10-l’ 2.359 x 1O-5 8.546 x 10-l’ 3.371 x 10-s 8.484 x 10 ” 
12 6.813 x 10-l’ 4.514 x 10-e 6.834x 10-l’ 3.947 x 1om9 6.809x IO-” 
13 2.730 x lo-l2 7.809 x 10 -’ 2.723 x lo-l2 3.419 x lo-‘0 2.712 x lo-” 
14 1.647 x lo-‘2 7.744 x 10m6 5.351 x lo-l4 3.597 x 10-l’ 4.174x lo-l4 
15 3.210 x lo-l2 4.566 x lo-’ 3.331 x 10-14 2.810x lo-‘2 2.420 x 10 I4 
16 1.025 x 10-l’ 4.586 x 1O-4 3.419 x 10-14 1.157 x lo-‘* 2.509 x lo-l4 
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algorithm within about half the CPU time. But due to the squared condition num- 
ber, the rounding errors increase faster if N is increased. For our example, we first 
observe bigger errors E, if N> 10 (Ck,N=O), N> 12 (Cn+kmod2=0), or N> 13 
(C=O). 

The most obvious result is that one obtains better-conditioned problems and a 
smaller non-smooth part of uN if its expansion takes (17) into account. The effect 
of using (18) (only or additionally) is much less significant. 

We can take advantage of this behavior if we use orthogonal polynomials Q, 
instead of monomials r” for the radial part of the trail functions. If the weight func- 
tion is symmetric, the corresponding orthogonal polynomials are either even or 
odd. Thus, (17) can also be satisfied for functions QneikV. In this case, we do not 
have to deal with overdetermined systems of equations any longer if we just halve 
the density of collocation points with respect to the radial coordinate. Applying 
FFT, it is possible to obtain fast and stable algorithms. This is applied in the next 
sections. 

As regards the two different ways of handling the coordinate origin, version 1 
using (27) and version 2 using (31), version 2 is often slightly better if the parity 
condition Z, + kmod 2 = 0 is not enforced. For the other cases, where enforcing 
c ,1 +kmodZ = 0 implies (31) automatically, there are no significant differences, The 
advantage of version 1 is that condition (27) can be used with a non-overdeter- 
mined set of collocation points even if C,, +kmodZ = 0 is enforced (as mentioned in 
the previous paragraph). 

6. SEPARABLE EQUATIONS 

If the coefficients of the transformed operator do not depend on cp, we can make 
a numerical separation approach. We consider for example Poisson’s equation (32). 
We restrict our considerations to homogeneous boundary conditions u = 0 on S. 
Solutions to inhomogeneous boundary conditions can be computed by adding an 
auxiliary function uR, where u, = g at all collocation points in S, 

{qj:qj=jn/N, j=O ,..., 2N-1). 

A good choice for ug is a linear combination of the (harmonic) functions rnekiflv. 
To solve the transformed differential equation 

-A”$= f” on U”, u”=o 0nS” (42) 

numerically, our procedure starts by evaluating the right-hand side So at the 
collocation points (N even) 

{(r,,,, Cpj): r,=cosmnJN, qj= jnjN,m=O, . . . . N/2, j=O, . . . . 2N- l}. (43) 

These values are partially interpolated with respect to the q-coordinate. This can be 
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done by O(N* log N) arithmetic operations since it requires the application of 
(N/2 + 1) FFTs. We obtain 

where (j?(~))~= - ,,,+ ,,.,,,,, is the discrete partial Fourier transform (interpolant) of 
f” which we have only evaluated at the points r,,,. We, analogously, represent the 
numerical solution u> by its discrete transform 

N 

4G(r,, qj) = C uik (rm) eikqJ. 
k=-N+1 

Our goal is to obtain a collocation solution; i.e., 

-A ouk(r, cp) = f”(r, cp) (46) 

should hold if (r, cp) is a collocation point (43). If we insert (45) and (44) into (46) 
we obtain the 2N ordinary differential equations 

for k= -N+ 1, . . . . N. 
In order to obtain a numerical solution u,,, which satisfies the parity condi- 

tion (17), we compose uTk(r) by using even trial functions if k is even and by odd 
trial functions if k is odd. This can be described formally by extending the function 
2 to C-1, l] by 

(48) 

and finally restricting the numerical solutions uTk(r) to [0, 11. If the equations (47) 
are solved numerically by collocation at the points 

rm = cos(mn/N), m = 0, . . . . N, (49) 

(46) will hold for all collocation points defined in (43). As already discussed in 
Section 3, the collocation equations are not well defined at the origin. After the 
separation approach, the resulting ordinary differential operators are singular for 
r = 0. We overcome this problem by multiplying Eq. (47) by r* and obtain 

d d 
-r-r-++’ 

dr dr > 
uTk(r) = &i(r). (50) 
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Thus, for the collocation point r = 0 we obtain the equations 

k2UIk (0) = 0. (51) 

For k # 0, this would result in a, = 0 if we used monomials as trial functions to 
expand 

a,r”. (52) 
n=O 

Thus, the numerical solution uN to (42) will automatically satisfy (30) and is 
continuous. 

For k = 0, we consider the limit of the basic equation (47) as r + 0: 

(53) 

This is possible only if 

(54) 

exists. Fortunately, uTo(r) consists of even trial functions only, in order to let uN 
satisfy the parity condition (17). If the trial functions are continuously differen- 
tiable, $ ( r = o uTo(0) = 0 and (54) exists. Applying 1’Hopital’s theorem, we obtain 

Thus, we can use 

-2s _ u%(r) = .2(O) 
r-0 

(55) 

(56) 

as the equation at the collocation point r = 0. 
This separation method is easily extended to Helmholtz’ equation 

-du+Au=f, (57) 

where 1 denotes a constant. Instead of (47) we have to solve inhomogeneous 
Bessel’s differential equations 

Instead of (56) we then have 

(59) 
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7. EFFICIENT SOLUTION OF BESSEL'S EQUATION 

In this section we deal a lot with subscripted variables. lf‘some of them are used 
without having dejined their values before, these values are assumed to he zero. 

If we compute the collocation approximations of (47) in a straightforward 
manner by solving a full-matrix system for each differential equation, the algorithm 
would require 6(N4) operations. This is already an improvement, since a direct 
approach as described by (13) requires O(N6). We will now describe a very efficient 
algorithm to compute the numerical solution of (47) by CO(Nlog N) operations. 
Thus, the collocation approximation of Poisson’s problem is computable by 
0(N2 log N) operations. 

A fast collocation solver for differential equations of the type 

-r -$ r f v(r) + k%(r) = r2f2, u(-l)=u(l)=O, (60) 

can be derived from the r-method of C. Lanczos [lo]. We compose the numerical 
solution by the trial functions 

!PJr) := (1 - r2) T,(r), (61) 

where T,(r) = cos(n arc cos r) denotes the Chebychev polynomial of degree n. The 
advantage of these trial functions is that we do not have to treat the boundary 
conditions explicitly. Furthermore, they lead to better-conditioned matrices; for 
further details see Heinrichs [9]. 

The right-hand side of (60) is interpolated by Chebychev polynomials 

rk dr,) = f h,T,(r,), 
I=0 

(62) 

where the r,,, are the members of the collocation point set (49). It is possible 
to compute the coefficients b, by Lo(Nlog N) operations applying the fast cosine 
transform (see, for example, [2]). For further usage we denote by h the function 

h(r) := $ b,T,(r). 
I=0 

(63) 

Let A be an arbitrary differential operator such that 

N+f 

A’Y,(r) = c s,T,(r) 
p=o 

(64) 

holds. Here, t denotes an integer of small absolute value. 
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A function 

UN(T) := 5 a, Ul,(r) 
ll=O 

satisfies the differential equation 

Av,=h 

(65) 

(66) 

if and only if the coefficients u, satisfy the system of equations 

N 

1 snpan = b,, 
?I=0 

p = 0, ..*, N + t. (67) 

If t > 0, the system (67) is overdetermined and generally not solvable. The r-method 
for approximately computing uN consists of simply neglecting the equations of (67) 
with p > N. It is not necessary to neglect such equations if we want only that uN 
satisfy (60) at the collocation points (49). Similarily to the s,,,, we can define 
coefficients ‘F,, which satisfy 

for all collocation points (49). If the a, satisfy the system 

N 

c S,a, = b,, p = 0, . . . . N, (69) 
n = 0 

then UN satisfies (66) at the collocation points rm. Since h(r,) = rip(r,), uN is also 
the collocation solution of (60) where A = -r(d/dr) r(d/dr) + k2 + r21. 

In the special case of the collocation points (43) the 3, can be easily computed 
from the r-method’s s,,~. At these points the Chebychev polynomials satisfy the 
equality 

Tk(rm) = T2N--k(rm). (70) 

Thus, the 9, can be computed by 

5, =S,,p+S,2N-p 

n = 0, . . . . N; p = 0, . . . . N - 1 

‘nN = ‘IIN 

n = 0, . . . . N 

(71) 

(72) 

(73) 

(74) 
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The s, for simple differential operators are well known. Auxiliary formulas to 
compute them are presented by Gottlieb and Orszag [S]. If A = I (identity), we 
have 

,I + 2 

I'Y,,(r) = c sf, Tp(rL (75) 
p=o 

wheres~,=$and~~,~,=s~,~+,=-aexcept that&=--$ands{,=a. 
If A = r(d/dr) r(d/dr), we have 

r $ r i YJr) = ni2 sn9, T,(r), 
p=O 

(76) 

where s:~ + Z = (-n*-4n-4)/4, s,9, = (-2n’- 12n-8)/4, sfnp2 = (-n*-20n-4)/4, 
sn9, = -6n for p = 1, . . . . n-4 and n+pE2Z, s,“~ = 3n for nE2Z and n>4. Special 
values for low indices are sgD2 = 2, sf, = -y, sfo= -6, and s&= -4. 

If A is the multiplication by r2 we have 

n+4 

r2Yn(r1 = C SL T,(r), 
p=o 

(77) 

where sLn=$, .s~,~~=s~,+~=s;~=s;~ = -&, but s&= -i and s;*=&. 
Thus, we are able to compute the 3, which arise when Bessel’s differential 

operator (multiplied by r2), 
d d 

-r~rr~r+k2+Ir2, (78) 

is discretized. The required s,,~ are 

S nP = -snq,+s;p+ns&, (79) 

from which the Z,,p can be computed using (71). 
Solving (69) results in the matrix formulation 

sTa=b, (80) 

where a = (a,), b = (b,), and ST is the transpose of the matrix !?= (ZnP); n, p = 
0 7 ..., N; ST has a special Hessenberg-like structure. By an elimination process, it 
can be transformed to a band matrix TgT. The matrix T which formally describes 
this elimination process is 

T= (81) 
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Thus, the solution a of (80) can be obtained by solving the equivalent band matrix 
system 

T,!?‘a = Tb. (82) 

The matrix TST and the vector Tb can be computed within O(N) operations. Thus, 
the system (80) is also solvable within Co(N) operations. 

The total computational work to obtain the collocation solution of (60) is 
dominated by the interpolation (fast cosine transform) of the right-hand side which 
requires 0( N log N) operations. 

We still have to show how to handle the case k2 = 0. Computing the s”,k and 
applying the elimination process (82) results in a singular band matrix TsT. We 
eliminate its subdiagonals. Applying this elimination, the lowest matrix row 
becomes zero. This zero row is then replaced by the coeflicients which arise from 
Eq. (59). After eliminating this row, an upper triangular band matrix system 
remains which can be solved easily. 

8. NUMERICAL RESULTS 

Tables V and VI. contain the numerical errors 

where M denotes the set of collocation points (43). The uN have been computed by 
the numerical separation approach. Table V contains solutions to Helmholtz equa- 
tions with various 1. For J. = 5, we have solved, in addition, the ordinary differential 
equations by the r-method. As a test for critical i, we have chosen - 1. = (2.4048)2 
which is close to the first eigenvalue of -A. Table VI contains the errors to Poisson 
problems with various exact solutions U. The functions u = r” are not infinitely 

TABLEV 

Numerical Errors of Even-Parity Collocation Solutions to -Au + iu =f, where u = 
cos(3.x + 4y + 0.7) 

N I=0 /I=1 I = 5 i. = 5, r-meth. 

8 2.457 x lo-’ 2.143 x 1O-3 4.497 x lo-) 7.554 x lo-* 
16 1.232 x 10m9 5.310 x 1o-9 2.103 x 10m8 1.911 x lo-’ 
32 2.012 x lo-l5 1.901 x lo-= 2.304 x lOWI5 2.359 x 10 - ” 

A=10 1=30 A=100 1= - (2.4048)* 

8 8.368 x 1O-3 2.139 x lo-’ 5.294 x 1O-2 2.551 x 10’ 
16 3.940 x lo-* 1.024 x lo-’ 2.522 x 10-7 3.496 x lo-’ 
32 1.915 x 1o-‘5 2.678 x lo- Is 2.984 x lo-l5 2.752 x 10-l’ 

581/96/2-2 
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TABLE VI 

Numerical Errors of Even-Parity Collocation Solutions to 
Various Poisson Problems 

N U=SJ’+’ u = cos(7.u + 8). + 0.7) 

8 2.856 x 1O-.8 1.474 x 10” 
16 2.665 x 10 - ” 4.873x 10 4 
32 2.665 x IO-” 7.994 x lo-l5 

8 7.677 x lO-2 2.922 x 10 -’ 1.225 x lo-’ 
16 1.647 x 1O-2 4.223 x 10 - 3 2.498 x lo-’ 
32 3.438 x lo-’ 6.045 x 10m4 8.505 x lo-’ 

differentiable (Theorems 1, 2, and 3). exfg ’ is included for comparisons with the 
straightforward program. For cos(7x + 8y + 0.7), the magnitude of the rounding 
error is equal to the truncation error if N= 32. 

All numerical results presented in this paper have been computed on a 
SIEMENS 7.580-S computer using double precision arithmetic (14 hexadecimal 
digits mantissa). 

9. CONCLUSIONS 

We have shown how to extend the spectral collocation method to problems on 
domains which are parametrized by singular coordinate systems. This is possible 
even if the coordinate singularity is a collocation point. The space spanned by the 
trial functions is a direct sum of two subspaces which contain either smooth or 
non-smooth functions. The smooth functions are those functions which are in the 
differential operator’s domain of definition. The collocation equations at the origin 
are then replaced by a collocation equation to be satisfied by the smooth part of 
the numerical solution and a continuity condition. 

Our numerical results show that it is possible to find a set of collocation points 
on a disk such that exponential convergence is achieved. For some (separable) 
differential equations, the numerical solution can be computed within O(N* log N) 
operations. 

For the case of non-separable equations with a separable principle part, the fast 
algorithm provides us with an efficient preconditioner for iterative solvers. It should 
also be possible to use it within a spectral multi-grid algorithm (Zang, Wong, 
Hussaini [12, 131, Heinrichs [6, 7, 81). 
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